

Le véhicule routier

- ▶ Caractéristiques géométriques
 - **»** Dimensions
 - Braquage
- Caractéristiques dynamiques
 - Résistances
 - >> Accélération / Décélération
 - >> Visibilité
 - >> Freinage / Arrêt

Le véhicule routier

- **▶** Comportement en courbe
 - **>>** Renversement
 - **→** Glissement / Dérapage
- ▶ Coefficient de frottement pneu chaussée

Dimensions géométriques

- Parc de véhicules
 - ▶ Bases légales OETV OCR
 - >> Forte hétérogénéité du parc
- Véhicules à considérer
 - >> Véhicule contraignant
 - □ Hauteur sous un ouvrage d'art
 - >> Véhicule représentatif
 - □ Cases de stationnement

Accélération

Véhicules normalisés

Ordonnance concernant les exigences techniques requises pour les véhicules routiers (OETV)

du 19 juin 1995 (Etat le 1er mai 2019)

Le Conseil fédéral suisse.

vu les art. 8, 9, al. 1bis, 2 et 3, 13, al. 2 et 4, 18, al. 2, 20, 25, 30, al. 1 et 4, 41, al. 2bis et 3, 103, al. 1 et 3, et 106, al. 1, 6 et 10, de la loi fédérale du 19 décembre 1958 sur la circulation routière (LCR)1,2

Première partie Dispositions générales Titre premier Introduction

Objet et champ d'application

1 La présente ordonnance règle

- les critères de classification des véhicules routiers;
- le contrôle en vue de l'immatriculation, le contrôle subséquent et le service antipollution des véhicules routiers;
- c. les exigences techniques requises pour les véhicules routiers.
- ² Les véhicules utilisables sur une voie ferrée, sur l'eau ou dans les airs sont régis par la présente ordonnance lorsqu'ils circulent sur la voie publique sans devoir
- ³ Les prescriptions de la loi fédérale du 12 juin 2009 sur la sécurité des produits⁴ s'appliquent à titre complémentaire à la mise sur le marché de véhicules non soumis à immatriculation, ainsi qu'à leurs composants et accessoires.

RO 1995 4425

- Nouvelle teneur selon le ch. I de l'O du 21 nov. 2018, en vigueur depuis le 1er fév. 2019
- Nouvelle teneur selon le ch. I de l'O du 16 nov. 2016, en vigueur depuis le 15 janv. 2017 (RO 2016 5133)

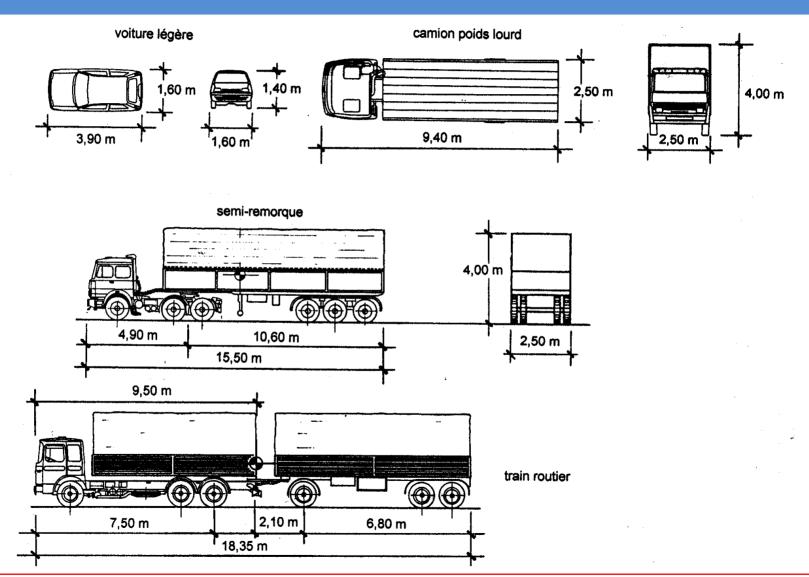
741.41

Véhicules exceptionnels

▶ Transport d'éléments importants

Véhicules exceptionnels

▶ Train routier en Australie


Caractéristiques géométriques

- ▶ Gabarit d'espace libre
- ▶ Rayon minimal des courbes
- ▶ Dimensions des places d'arrêt et de croisement
- ▶ Surlargeur en courbe
- Visibilité (hauteur de l'œil sur la chaussée)
- Géométrie des changements de déclivités
- ▶ Dispositifs de sécurité : glissières, bordures, etc.
- Dimensionnement de la chaussée

Dimensions des véhicules

Types de véhicules	Longueur art. 65 OCR [m]	Largeur art. 64 OCR [m]	Hauteur art. 66 OCR [m]	Garde au sol [cm]
Voiture de tourisme VL				
max. admissible (avec remorque)	12,00	2,55	4,00	_
véhicule normalisé	5,00	1,80	1,80	15
Poids lourd PL (sans remorque)				
max. admissible	12,00			
véhicule normalisé	10,00	max admissible	20	
Autocars	15,00	■ véhicule ■ véhicule		
Véhicule articulé (semi-remorque) max admissible ≡ véhicule normalisé	16,50	normalisé 2,55	normalisé 4,00	20
Train routier TR et bus à plate-forme pivotante max admissible ≡ véhicule normalisé	18,75			
Moto et vélo				
espace nécessaire ≡ véhicule normalisé	2,30	0,60	2,00	_

Dimensions des véhicules

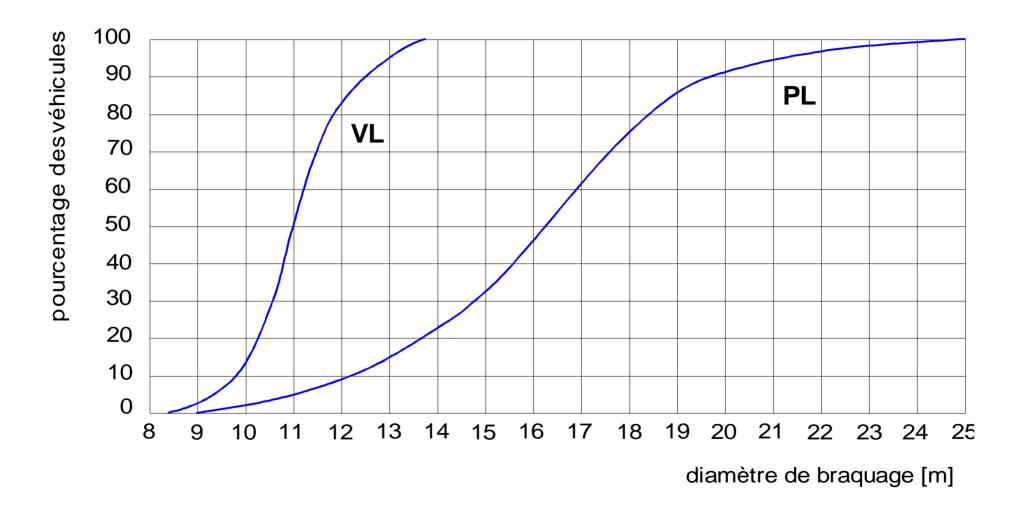
Géométrie de braquage

R_i rayon intérieur de braquage

R rayon auxiliaire de braquage

R_e rayon extérieur de braquage

E empattement

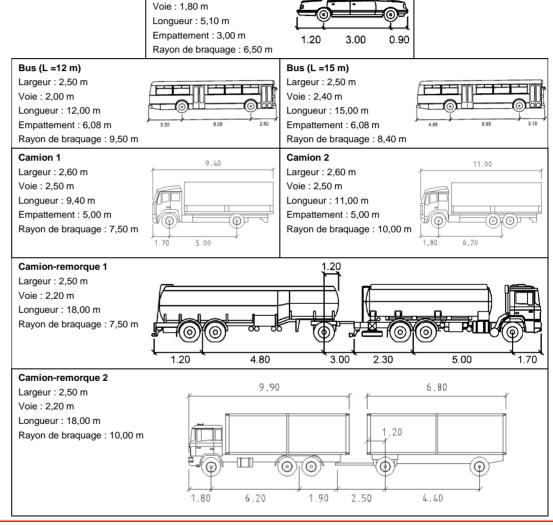

P_a porte-à-faux avant

L largeur du véhicule

$$R_i = \sqrt{R^2 - E^2} - \frac{L}{2}$$

$$R_e = \sqrt{(\sqrt{R^2 - E^2} + \frac{L}{2})^2 + (E + P_a)^2}$$

Valeurs usuelles


Valeurs normalisées

► Article 40, al. 1 de l'OETV

« Les voitures automobiles et les ensembles de véhicules, vides et chargés, doivent pouvoir se mouvoir dans les limites d'une surface annulaire d'un diamètre extérieur de 25 m et d'un diamètre intérieur de 10,60 m, sans que la projection d'une partie du véhicule sur la chaussée - à l'exception des rétroviseurs et des clignoteurs de direction avant - soit située hors de la surface de l'anneau »

Valeurs normalisées

▶ VSS 40 198a

Voiture automobile légère

Largeur: 1.90 m

Formules de giration

www.autoturn.ch

Formules de giration

Véhicule Simple : Rayon Intérieur

Géométrie du véhicule:

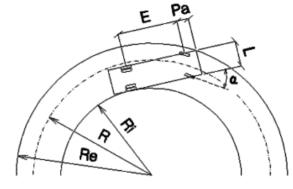
Pa = Porte à faux avant [m]:

1.8

E = Empattement [m]:

6.2

L = Largeur [m]:


2.5

Variable:

Ri = Rayon intérieur [m] :

CALCULER =>

5.35

Pour changer de variable, cliquez sur Re, R ou α

Résultat:

Rayon de braquage [m] $R = \sqrt{\left(R_i + \frac{L}{2}\right)^2 + E^2 - P_r^2 + E_r^2} = 9.055$

Rayon extérieur [m] $R_e = \sqrt{(\sqrt{R^2 - E^2} + \frac{L}{2})^2 + (E + Pa)^2} = 11.208$

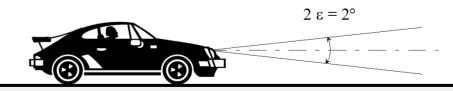
Angle de braquage [°] $\alpha = \arcsin\left(\frac{E}{R}\right)$ = 43.210

Largeur balayée [m] Re-Ri = 5.858

Surlargeur [m] Largeur balayée - Largeur = 3.358

Eclairage & Visibilité

▶ Hauteur de l'œil du conducteur


VL : $H_o = 1,00 \text{ m}$

PL : $H_o = 2,00 \text{ m}$

▶ Eclairage des phares

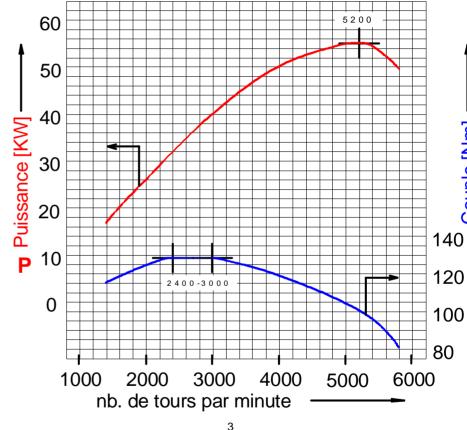
- >> Feux de route
 - □ 100 m
- >> Feux de croisement
 - □ 50 m gauche
 - □ 75 m droite

Conception et réalisation des voies

Courbe de performance

▶ Puissance

- **→ Moment**
- >> Vitesse angulaire n


▶ Force de traction à la jante

$$F_{\text{tract}} = \frac{\eta \cdot P}{V}$$

Vitesse du véhicule

$$\mathbf{v} = \frac{\mathsf{n}}{141 \cdot \mathsf{u}}$$

rapport·de·la·transmission°:·3,45·en·1ère,·1,25·en·3ème·et·0,74·en·5ème

cylindrée : 1598 cm³

▶ Roulement R_r

 $R_r = k_r \cdot \text{poids du véhicule}$

- >> Coefficient k_r
- >> Type de revêtement
 - ☐ Béton ou enrobé bitumineux $k_r = 1,3 \%$
 - \square Pavés et gravier compacté $k_r = 3,0 \%$
 - □ Terre et gravier non compactés $k_r = 5,0 \%$
 - \square Rails de chemin de fer $k_r = 0.2 \%$

▶ Résistance de l'air R_a

>> Coefficient de forme Cx

selon véhicule \rightarrow 0,4 à 1,0

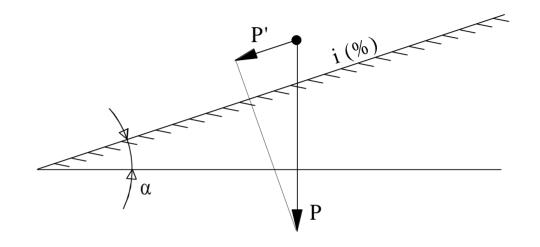
>> Surface frontale S

 m^2

>> Vitesse relative

m/s

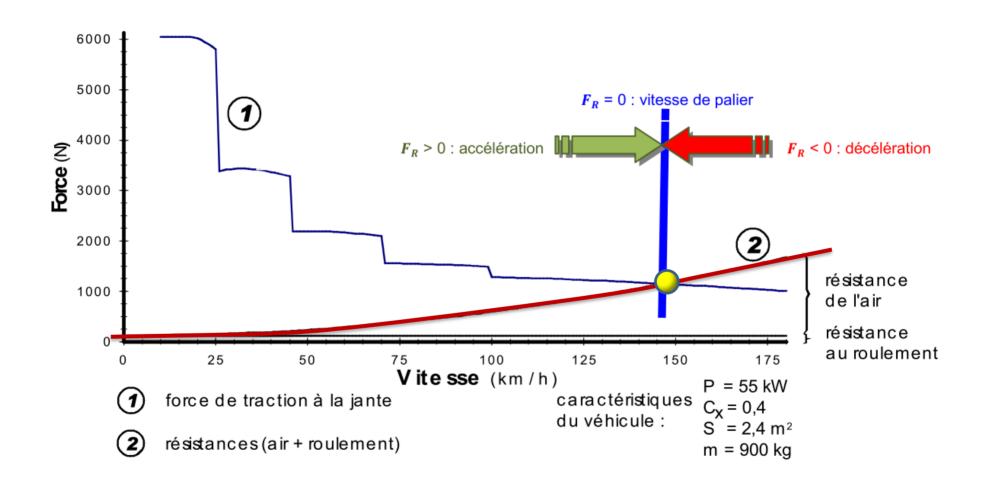
□ Intervient au carré!


Densité de l'air ρ

1,29 kg / m³

$$\mathbf{R_a} = \frac{1}{2} \cdot \mathbf{C_X} \cdot \mathbf{S} \cdot \mathbf{p} \cdot \mathbf{v}^2$$

- ▶ Déclivité R_d
 - >> Pente ou rampe
 - **→** Angle ou pourcentage
- ▶ Inertie R_i
 - >> Accélération

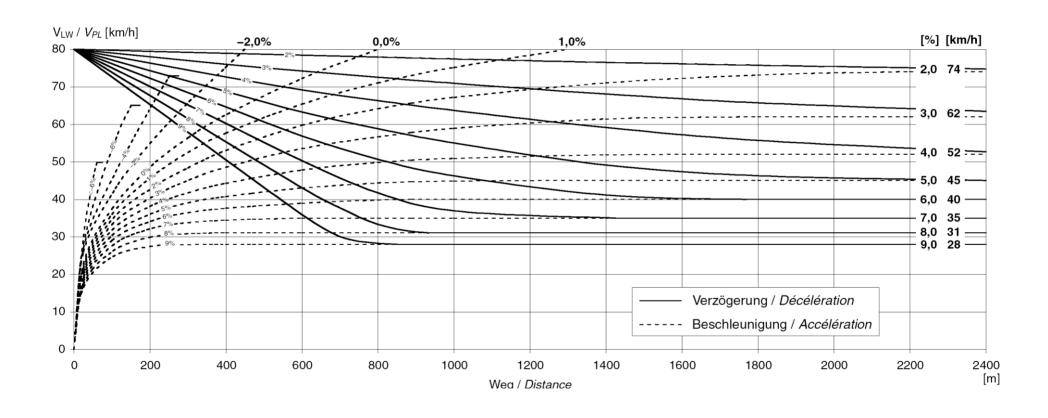

$$\mathbf{R}_{i} = \mathbf{P} \cdot \mathbf{\gamma} / \mathbf{g}$$

$$R_d = \pm P \cdot \sin \alpha$$

- ▶ Équilibre des forces
 - \rightarrow Force de traction = Σ résistances au mouvement
 - >> Vitesse en palier
 - >> Plus d'accélération

Exemple

Accélération


▶ Variable

- >> Véhicule
- >> Gamme de vitesses

			Variation de vitesse (km/h)				
			0 ÷ 10	0 ÷ 30	0 ÷ 50	0 ÷ 75	
	'n	Véhicules légers VL	2,3	2,0	1,5	0,75	
ı	Accélération γ (m/s²)	Poids lourds PL	0,9	0,8	0,7	0,55	
ı		Bus urbains	1,3	0,8			
ı	ccé 7	Trolleybus	1,5	1,3			
	ď	Tramways	1,7	1,4			

Accélération des PL

▶ Valeurs empiriques

Décélération

▶ Adaptation au tracé

Adaptation de la vitesse le long du tracé	accélération $\gamma \approx 0.8 \text{ m/s}^2$ décélération $\gamma \approx 1.0 \text{ m/s}^2$
Approche des carrefours et présélections	accélération $\gamma = 1.0 \text{ m/s}^2$ décélération $\gamma = 2.0 \text{ m/s}^2$

- Hypothèses simplificatrices
 - >> Déclivité constante et faible
 - >> Résistance de l'air négligée
 - >> Adhérence constante
 - >> Poids du véhicule total
 - **▶** E_c se dissipe par les freins

▶ Principe de détermination

- \rightarrow E_c = force de frottement \cdot D_f
- Paramètres
 - >> Vitesse initiale
 - **→ Coefficient de frottement longitudinal** *CFL*
 - ▶ Déclivité longitudinale

▶ Formule simplifiée

- ▶ Si CFL ~ i
 - → D_f infinie
 - >> Glissement longitudinal
 - >> Descente verglacée
 - □ CFL tend vers 0,1

$$\Box$$
 i = -10 % = -0,1

$$\boldsymbol{D}_{f} = \frac{{V_{i}}^{2}}{2 \cdot g \cdot (CFL \pm i)}$$

▶ Prise en compte de la résistance de l'air

$$D_f = \frac{{V_i}^2}{2 \cdot \left[g \cdot (CFL \pm i) + \frac{W}{m}\right]}$$

▶ Peu de différence

Distance d'arrêt

- ▶ Prise en compte du temps parcouru durant la réaction
 - >> Généralement 2 secondes de réaction

$$\boldsymbol{D_a} = V_i \cdot t_r + \frac{{V_i}^2}{2 \cdot g \cdot (CFL \pm i)}$$

Vérification de la sécurité routière

- ▶ Comparaison de deux types de distances
- ▶ Distances de visibilité S_i
 - >> Géométrie de la route et son environnement
 - >> Indépendante du véhicule et de l'usager
 - → 4 types de distances de visibilité S₁ à S₄ selon les paramètres géométriques considérés dans l'analyse

Vérification de la sécurité routière

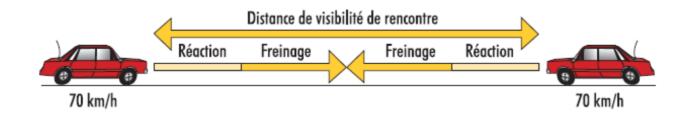
- ▶ Distances liée au véhicule D_i
 - >> Dynamique du véhicule
 - >> Comportement de l'usager
 - >> Conditions de surface de la chaussée
 - → 3 types de distances possibles selon les différentes configurations de circulation

Vérification de la sécurité routière

▶ Vérification de l'inéquation

$$min(S_1, S_2, S_3, S_4) \geq D_i$$

Distance liée au véhicule

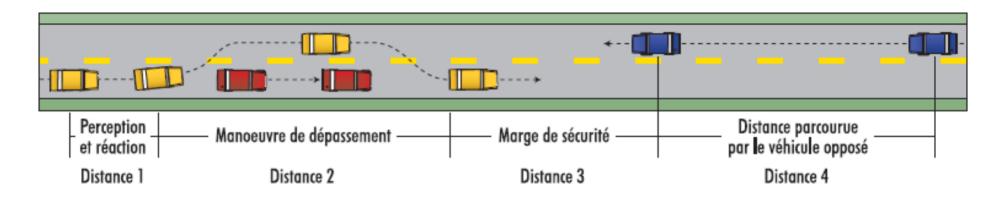

▶ 3 distances à considérer

▶ Distance d'arrêt

Distance de visibilité de rencontre

Distance de visibilité de dépassement D_d

Distance de visibilité de rencontre D_r

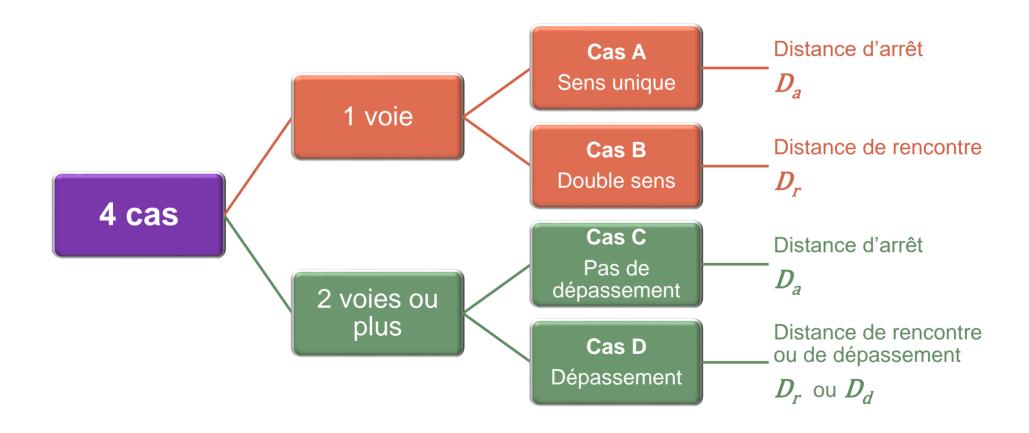

▶ Somme des distances d'arrêt aller + retour

$$D_r = D_{a,aller} + D_{a,retour}$$

- ▶ Formule simplifiée
 - >> Déclivité i négligeable
 - >> Vitesse des 2 véhicules équivalentes

$$D_r = 2 \cdot D_a$$

Distance de visibilité de dépassement D_d

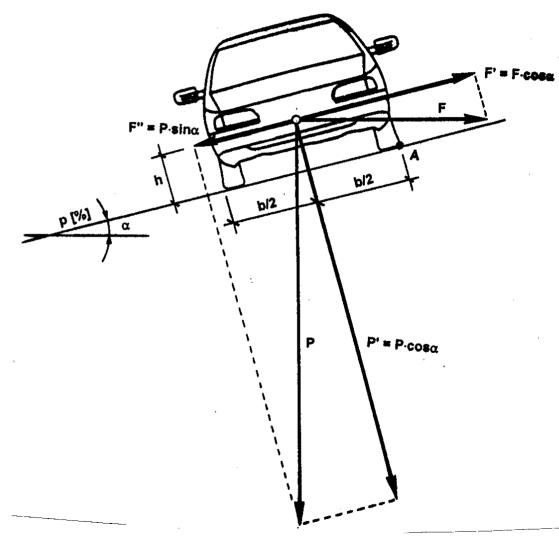


- ▶ Dépend de la vitesse du véhicule
- ▶ Valeurs (norme Suisse)

Vitesse (km/h)	60	70	80	90	100
Distance de dépassement D _d (m)	450	500	550	575	625

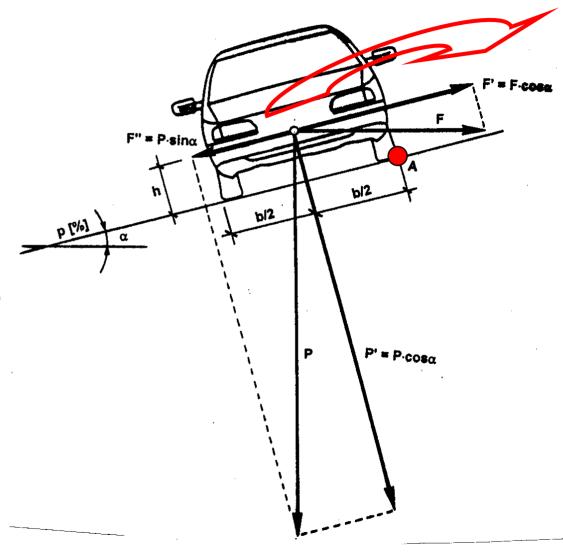
Vérifications

Cas possibles

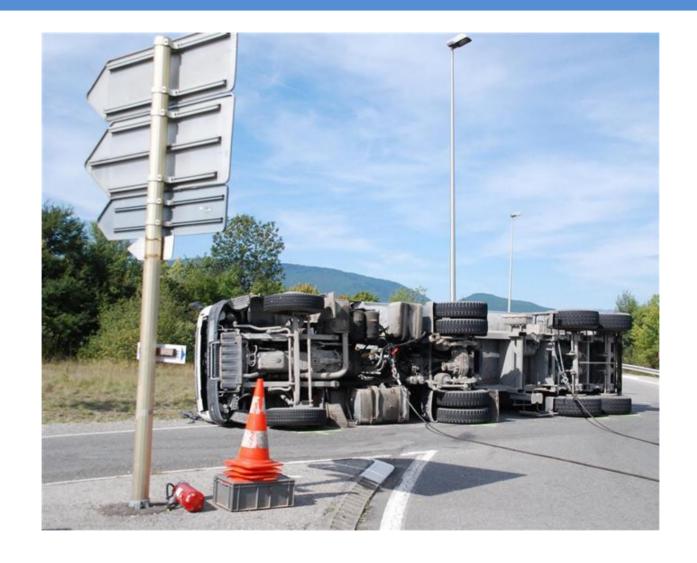


de circulation - Automne 2024

Comportement en courbe


- **▶** Force centrifuge
- **▶** Renversement
- ▶ Dérapage Glissement

$$\mathbf{F} = \mathbf{m} \cdot \frac{\mathbf{V}^2}{\mathbf{R}}$$

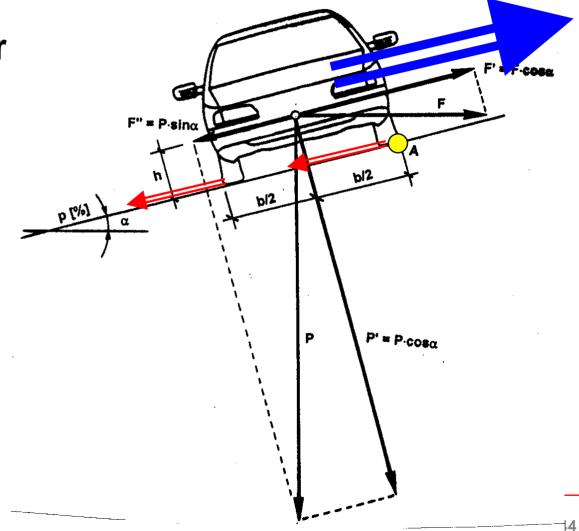


- **▶** Force centrifuge
- ▶ Rotation autour de A

- ▶ b demi-voie
- h hauteur centre de gravité

$$\begin{array}{rcl} (P \cdot cos\alpha + F \cdot sin\alpha) \cdot \frac{b}{2} & = & (F \cdot cos\alpha - P \cdot sin\alpha) \cdot h \\ & & & & \\ M_{stabilisant} & & & & M_{renversant} \end{array}$$

Rayon minimum
$$R \ge \frac{v^2}{g} \cdot \left[\frac{h - \frac{b}{2} \cdot tg\alpha}{\frac{b}{2} + h \cdot tg\alpha} \right]$$
 [m]


$$R_{min,r} = \frac{2 \cdot V^2 \cdot h}{g \cdot b}$$

Dérapage

Dérapage

- **▶** Force centrifuge
- **▶** Glissement vers l'extérieur

Dérapage

$$|(P \cdot \cos \alpha + F \cdot \sin \alpha) \cdot f_T| > |(F \cdot \cos \alpha - P \cdot \sin \alpha)|$$

$$R \ge \frac{v^2}{g} \cdot \left[\frac{\cos \alpha - f_T \cdot \sin \alpha}{\sin \alpha + f_T \cdot \cos \alpha} \right] \quad [m]$$

$$p = tg\alpha$$

$$R_{min,d} = \frac{V^2}{g \cdot (CFT \pm p)}$$

Formules

▶ Renversement

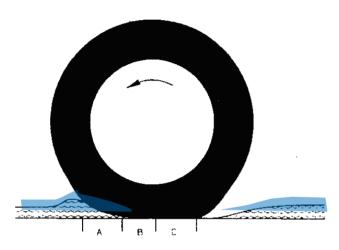
$$R_{min,r} = \frac{2 \cdot V^2 \cdot h}{g \cdot b}$$

Dérapage

$$R_{min,d} = \frac{V^2}{g \cdot (CFT \pm p)}$$

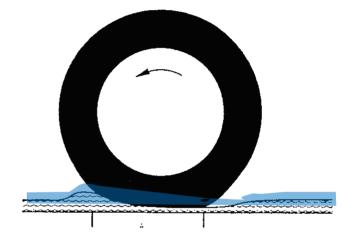
Conception et réalisation des voies

Paramètres


- ▶ Renversement & Dérapage
 - ▶ Rayon de la courbe R
 - >> Vitesse du véhicule V (au carré!)
- ▶ Renversement
 - >> Largeur de la voie b
 - >> Hauteur du centre de gravité h
- Dérapage
 - >> Dévers p
 - >> Coefficient de frottement transversal CFT

Coefficient de frottement

- ▶ Conditions atmosphériques
 - >> Pluie hydroplanage
 - >> Verglas
- Rugosité du revêtement
 - >> Micro et macro-rugosité
- ▶ État des pneumatiques
- Vitesse du véhicule
- ▶ Taux de glissement de la roue

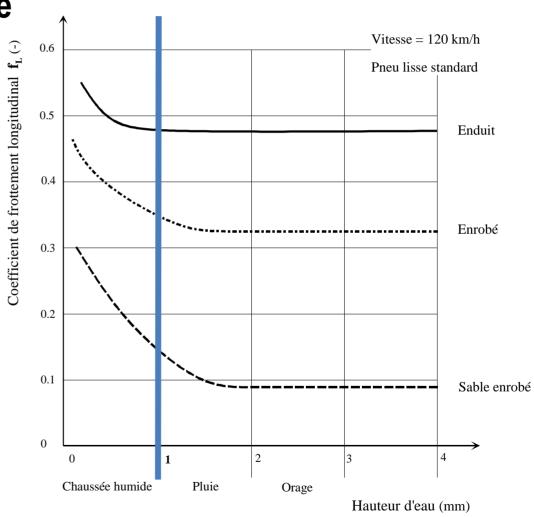

Conditions atmosphériques

▶ Hydroplanage

Pneumatique roulant sur chaussée mouillée en adhérence partielle.

- A. Zone de film d'eau continu,
- B. Zone de transition.
- C. Zone de contact sec.

Pneumatique en hydroplanage. La zone A s'est étendue à toute l'aire de contact.


- ▶ Dépend de ...
 - >> ... vitesse

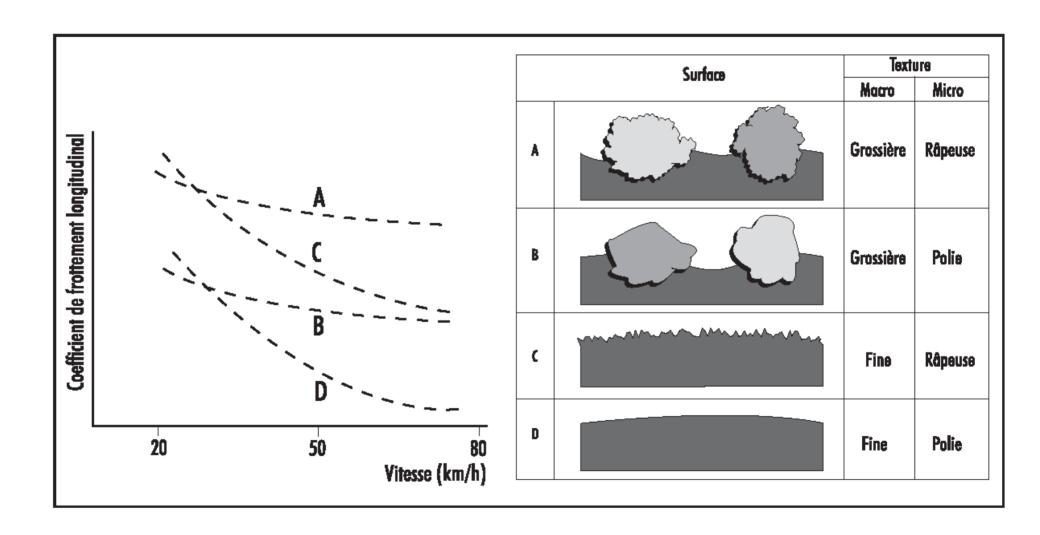
profondeur des sculptures

Conditions atmosphériques

▶ Hauteur d'eau normalisée

→ 1 mm

Rugosité du revêtement

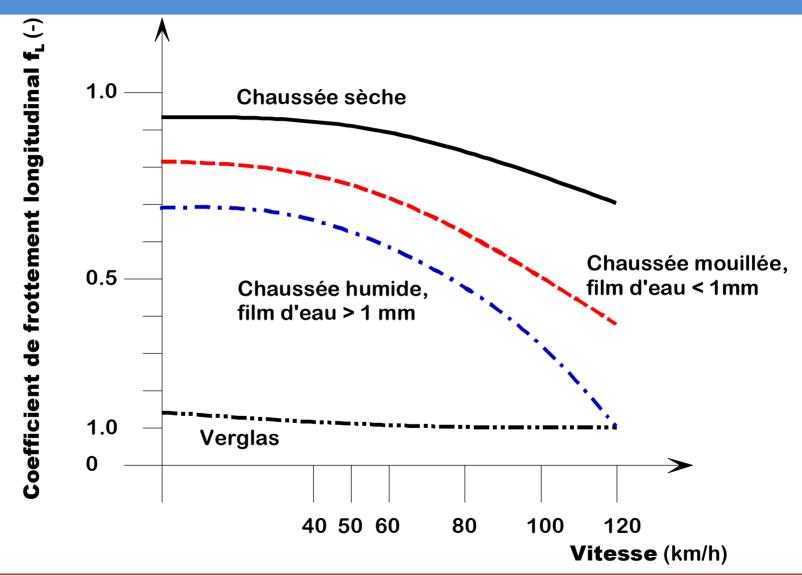

Microrugosité

>> Rugosité résultant de la surface des granulats (qualité des gravillons) assure le contact sec pneu - chaussée

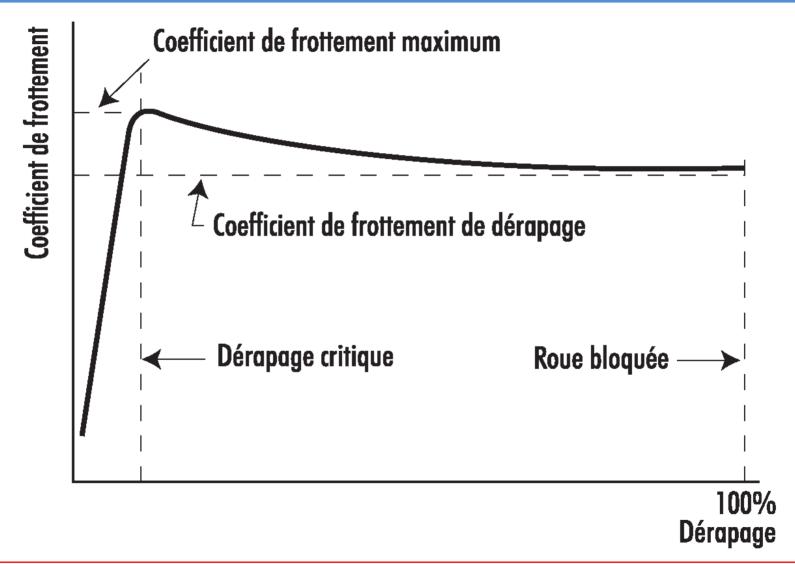
▶ Macrorugosité

>> Rugosité due au mélange de granulats de diamètres différents permet le drainage de l'eau de surface

Rugosité du revêtement

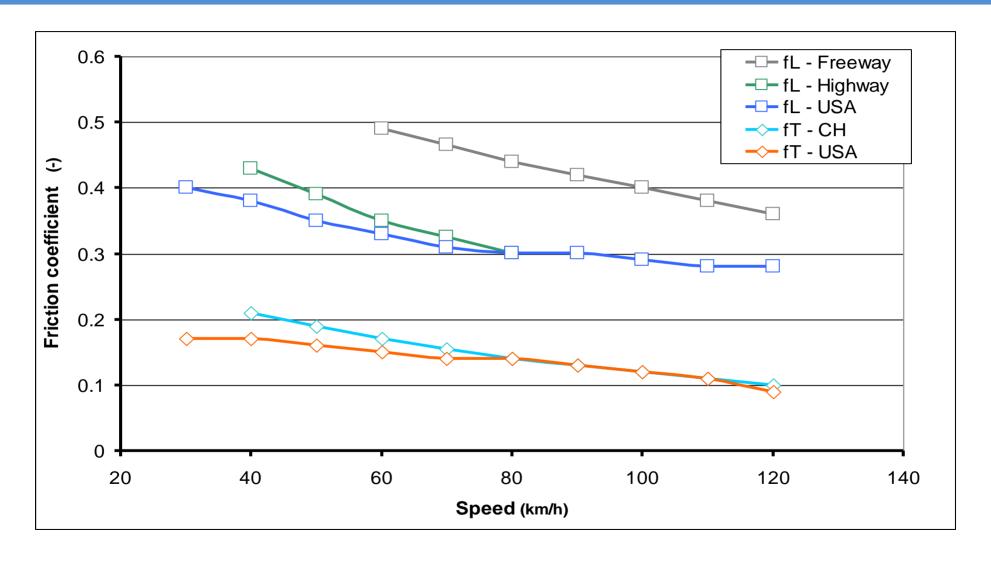


Etat des pneumatiques


▶ Pneu lisse

- >> Idéal sur route sèche
- >> Doit évacuer l'eau sur route mouillée
- **▶** Profondeur des sculptures
 - ▶ Pneu neuf
 8 mm
 - ▶ Pneu en fin de vie 1,6 mm

Vitesse


Taux de glissement de la roue

Valeurs usuelles des coeff. de frottement

		SÈCH	E		MOUILLÉE			
TYPE DE CHAUSSÉE	MOINS DE 50 km/h		PLUS DE 50 km/h		MOINS DE 50 km/h		PLUS DE 50 km/h	
	DE	À	DE	À	DE	À	DE	À
Ciment Portland Neuf Usure normale Poli par la circulation	0,80 0,60 0,55	1,20 0,80 0,75	0,70 0,60 0,50	1,00 0,75 0,65	0,50 0,45 0,45	0,80 0,70 0,65	0,40 0,45 0,45	0,75 0,65 0,60
Enrobés bitumineux Neuf Usure normale Poli par la circulation Excès de bitume	0,80 0,60 0,55 0,50	1,20 0,80 0,75 0,60	0,65 0,55 0,45 0,35	1,00 0,70 0,65 0,60	0,50 0,45 0,45 0,30	0,80 0,70 0,65 0,60	0,45 0,40 0,40 0,25	0,75 0,65 0,60 0,55
Gravier Compacte, huilé non-compacté	0,55 0,40	0,85 0,70	0,50 0,40	0,80 0,70	0,40 0,45	0,80 0,75	0,40 0,45	0,60 0,75
Cendres Compacté	0,50	0,70	0,50	0,70	0,65	0,75	0,65	0,75
Pierre Concassée	0,55	0,75	0,55	0,75	0,55	0,75	0,55	0,75
Glace Lisse	0,10	0,25	0,07	0,20	0,05	0,10	0,05	0,10
Neige Compactée Non-compactée	0,30 0,10	0,55 0,25	0,35 0,10	0,55 0,20	0,30 0,30	0,60 0,60	0,30 0,30	0,60 0,60

Valeurs normalisées

Valeurs normalisées

- **▶** Normes suisses
- **▶** Normes américaines

Vitesse de projet (40	60	80	100	120	
CFL pour les RGD	(CH)	_	0,49	0,44	0,40	0,36
CFL pour les autres routes	(CH)	0,43	0,35	0,30	_	
CFL	(USA)	0,38	0,33	0,30	0,29	0,28
CFT	(CH)	0,21	0,17	0,14	0,12	0,10
CFT	(USA)	0,17	0,15	0,14	0,12	0,09

